EFFECT OF MONOUNSATURATED FAT IN THE DIET ON THE SERUM CAROTENOID LEVELS

By

KIRAN DEEP KAUR AHUJA
Bachelors in Science (Nutrition),
Diploma (Nutrition and Health Education)
Graduate Diploma (Dietetics)
Graduate Diploma (Human Nutrition)

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTERS OF BIOMEDICAL SCIENCE (Research)

University of Tasmania

November, 2001
UNIVERSITY OF TASMANIA

CANDIDATE DECLARATION

I certify that the thesis entitled

"Effect of monounsaturated fat in the diet on the serum carotenoid levels"

submitted for the degree of Masters of Biomedical Science (Research) is the
result of my own research, except otherwise acknowledged and that this thesis in
whole or in part has not been submitted for an award, including a higher degree,
to any other university or institution.

This thesis may be made available for loan and limited copying in accordance
with the Copyright Act 1968.

FULL NAME: Kiran Deep Kaur Ahuja

Signed…………………………. Date…………………………….
ACKNOWLEDGEMENTS

Many people have made substantial contributions towards the production of this thesis, and I gratefully acknowledge their support. First of all my parents and my uncle, without whose support I would not have come so far from home (India) and undertaken this project. I sincerely thank my supervisor Professor Madeleine Ball, who guided me through all the phases of this research project and somehow managed to get the best out of me. I would also like to thank my associate supervisor and a good friend Dr. Emma Ashton, who assisted in most aspects of this research. She has been a very good intellectual and emotional help. The LDL oxidation assay was set up with the assistance of Emma.

I am indebted to Dr. Su Qing who measured the serum and food antioxidant content for the project. Dr. Rachel Stoney supervised the planning of the study in women, recruiting women subjects, venesection and sorting the GOS data. Rochelle Israel recruited some female subjects and did the oxidation work for the study in women and Dr Duo Li showed how to perform the serum lipid and lipoprotein for the study in women; and Melinda Cleverdon for her help in sorting out the GOS data. All other work for this thesis was completed by myself.

I thank the people who volunteered for the study, without whom none of this would ever have been possible.

I am thankful to Deakin University, which gave me full facilities to do the project and the staff of the School of Biomedical Science, University of Tasmania, who
made it easier for me to settle down here in Launceston and write the thesis in time. I would also like to thank all the friends that I have made throughout my time in Australia, for emotionally supporting me, and keeping me on track for not letting me forget my priorities.

I would like to acknowledge the financial assistance provided. I gratefully acknowledge the support of the Grains Research and Development Corporation, Canberra, Australia and Meadow Lea Foods Ltd, Mascot, Australia for partial funding of the research project. I am also thankful to H. J. Heinz Pty Ltd. for providing some food and funding for some analysis.
TABLE OF CONTENTS

TITLE PAGE I
CANDIDATE DECLARATION II
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS V
LIST OF FIGURES IX
LIST OF TABLES X
ABBREVIATIONS USED IN THIS THESIS XII
ABSTRACT XIII
INTRODUCTION 1
LITERATURE REVIEW 4
1.1 Coronary Heart Disease prevalence 4
1.2 Serum lipids and CHD 4
1.2.1 Dietary fat and serum cholesterol 5
1.2.2 Dietary carbohydrates and serum cholesterol 9
1.3 Oxidation of LDL 12
1.3.1 Factors affecting the oxidation of LDL 15
1.3.1.1 Fatty acid composition 16
1.3.1.2 Content of antioxidants 19
1.4 Carotenoids, vitamin E and CVD 23
1.4.1 Dietary intake of carotenoids, vitamin E and CVD 23
1.4.2 Serum and/ or tissue carotenoids, vitamin E and CVD 26
1.4.3 Supplemental carotenoids, vitamin E and CVD 29
1.5 Carotenoids: Structure and sources 32
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5.1 Absorption of carotenoids and nutritional factors affecting absorption</td>
<td>35</td>
</tr>
<tr>
<td>1.5.2 Postabsorptive transport and distribution of carotenoids</td>
<td>41</td>
</tr>
<tr>
<td>1.5.3 Association of carotenoids with physiological and lifestyle factors</td>
<td>45</td>
</tr>
<tr>
<td>1.5.4 Lycopene</td>
<td>47</td>
</tr>
<tr>
<td>1.6 Vitamin E: Structure and sources</td>
<td>52</td>
</tr>
<tr>
<td>1.6.1 Absorption and metabolism of vitamin E</td>
<td>53</td>
</tr>
<tr>
<td>1.6.2 Tissue distribution, transport of vitamin E</td>
<td>54</td>
</tr>
<tr>
<td>1.7 Research Aims</td>
<td>55</td>
</tr>
<tr>
<td>METHODOLOGY</td>
<td>57</td>
</tr>
<tr>
<td>2.1 Study sample</td>
<td>57</td>
</tr>
<tr>
<td>2.2.1 Weighed food records</td>
<td>58</td>
</tr>
<tr>
<td>2.2.2 Diets</td>
<td>60</td>
</tr>
<tr>
<td>2.2.3 Blood specimen collection</td>
<td>62</td>
</tr>
<tr>
<td>2.2.4 Anthropometric measurements</td>
<td>63</td>
</tr>
<tr>
<td>2.2.5 Dietary Compliance</td>
<td>63</td>
</tr>
<tr>
<td>2.2.6 Geelong osteoporosis study (GOS)</td>
<td>64</td>
</tr>
<tr>
<td>2.3 Biochemical analysis</td>
<td>64</td>
</tr>
<tr>
<td>2.3.1 Carotenoids</td>
<td>64</td>
</tr>
<tr>
<td>2.3.2 Lipids and Lipoprotein</td>
<td>68</td>
</tr>
<tr>
<td>2.3.3 Oxidation of LDL</td>
<td>70</td>
</tr>
<tr>
<td>2.4 Statistical Analysis</td>
<td>72</td>
</tr>
<tr>
<td>RESULTS</td>
<td>74</td>
</tr>
<tr>
<td>3.1 Baseline Characteristics</td>
<td>74</td>
</tr>
<tr>
<td>3.2 Diets</td>
<td>75</td>
</tr>
</tbody>
</table>
3.2.1 Women 75
3.2.2 Men 76
3.3 Usual diet and serum retinol, tocopherol and carotenoids 79
 3.3.1 Lycopene intake during dietary intervention periods 81
 3.3.2 Effect of MUFA and HCLF diets on serum retinol, tocopherol and carotenoids 83
 3.3.2.1 Women 83
 3.3.2.2 Men 86
3.4 Serum lipids and lipoproteins 88
 3.4.1 Women 88
 3.4.2 Men 89
3.5 Oxidation of LDL cholesterol 91

DISCUSSION 92
4.1 Discussion of methodology 92
 4.1.1 Subjects 92
4.2 Study design 96
4.3 Dietary design 96
 4.3.1 Diet records 96
 4.3.2 Low carotenoid diet 97
 4.3.3 Duration of the dietary periods 98
 4.3.4 Why 38% and 15% of energy from fat in the diets 98
 4.3.5 Tomatoes and tomato products 99
4.4 Discussion of results 101
 4.4.1 Body weight and diets 101
 4.4.2 Carotenoids 103
4.4.3 Effect of diets on serum lycopene and other carotenoid levels 105
4.4.4 Effects of diets on serum tocopherol levels 110
4.4.5 Lipids and lipoproteins 111
4.4.6 Effect of diets on oxidation of LDL 114
4.4.7 Effect of lycopene on oxidation of LDL 115
4.4.8 Effect of vitamin E on oxidation of LDL 117

4.5 Conclusion and future directions 119

Appendix A Diet Record 121
Appendix B Food Frequency Questionnaire 126
Appendix C Low Carotenoid Diet 128
Appendix D Basic Menu on the Two Diets 131
REFERENCES 135
LIST OF FIGURES

Figure 1.1 Generation process of fatty streak lesion in atherosclerosis 13
Figure 1.2 Link between lipid infiltration and endothelial injury 14
Figure 1.3 Antioxidant action of carotenoids 20
Figure 1.4 Antioxidant action of vitamin E 21
Figure 1.6 Steps of carotenoid absorption and dietary factors that affect carotenoid absorption 38
Figure 1.7 Postabsorption transport of beta-carotene to liver and extrahepatic tissues 43
Figure 1.8 Structure of trans and cis isomers of lycopene 49
Figure 1.9 Structure of vitamin E 53
Figure 2.1 Dietary protocol for women 59
Figure 2.2 Dietary protocol for men 59
Figure 2.3 Serum carotenoid chromatograph 67
Figure 2.4 LDL oxidation kinetics graph 71
LIST OF TABLES

Table 1.1 Dietary characteristics in the United States, Greece and Japan in the 1960s

Table 1.2 Factors potentially affecting the oxidation of LDL *in vivo*

Table 1.3 Fatty acid composition of some commonly used cooking fats in Australia

Table 1.4 Epidemiological and case control studies of intake of antioxidants (carotenoids and vitamin E) and CVD

Table 1.5 Epidemiological and case control studies of blood/tissue antioxidants (carotenoids and vitamin E) and coronary disease

Table 1.6 The major contributors of carotenoids in the human diet

Table 1.7 Plasma content of lipid soluble antioxidants

Table 1.8 Lycopene concentration in different tomato products

Table 3.1 Baseline characteristics of the study sample

Table 3.2 Average nutrient intake in women on HCLF and MUFA diets

Table 3.3 Average nutrient intake in men on HCLF and MUFA diet

Table 3.4 Serum carotenoid levels on usual diet

Table 3.5 Calculated lycopene intake and serum lycopene levels on usual diet

Table 3.6 Lycopene intake on usual diet

Table 3.7 Lycopene content of the study diets in women and men

Table 3.8 Lycopene content of foods used in the present study

Table 3.9 Serum concentration of retinol, alpha-tocopherol and carotenoids in women

Table 3.11 Serum lipids and lipoproteins in women and men
Table 3.12 Oxidisability of LDL, conjugated diene formation and rate of oxidation at the end of HCLF and MUFA diets
ABBREVIATIONS USED IN THIS THESIS

ATBC Alpha Tocopherol Beta-carotene
BMI Body Mass Index
BHT Butylated Hydroxytoluene
CARET Carotene and Retinol Efficacy Trial
CHD Coronary Heart Disease
CI Confidence Intervals
CSIRO Commonwealth Scientific and Industrial Research Organisation
CVD Cardiovascular Disease
EDTA Ethylenediamine Tetraacetic Acid
GLM General Linear Model
HDL High Density Lipoprotein
HPLC High Pressure Liquid Chromatography
LDL Low Density Lipoprotein
MI Myocardial Infarction
MJ Mega Joule
MUFA Modified fat monounsaturated fat rich diet
PBS Phosphate Buffer Solution
PEG Polyethylene Glycol
PUFA Polyunsaturated Fatty Acid
RPM Revolutions Per Minute
SD Standard Deviation
SEM Standard Error of Mean
SFA Saturated Fatty Acid
SPSS Statistical Packages for Social Scientists
TBARS Thiobarbituric Acid Reactive Substances
VLDL Very Low Density Lipoprotein
WHO World Health Organisation
Epidemiological data suggest that populations with higher serum/tissue levels of carotenoids have a lower risk of coronary heart disease (CHD), possibly due to the antioxidant capacity. Lycopene, a carotenoid mainly found in tomatoes, has been suggested to have the greatest antioxidant capacity of the carotenoids found in fruits and vegetables. Carotenoids are fat-soluble compounds and their absorption from the diet into the body may depend on the amount of dietary fat ingested.

For years there has been debate about what energy source should replace the saturated fat in the diet, to give the optimum serum lipid profile to reduce CHD risk. Studies have compared monounsaturated fat rich diets with high carbohydrate, low fat diets and have found that both diets decrease serum cholesterol and low-density lipoprotein (LDL) cholesterol levels. Results for high-density lipoprotein (HDL) cholesterol and triglycerides have been inconsistent. However, it is of interest to study the effects of different diets on lipid oxidation, as this may also influence CHD risk.

Studies have investigated the effect of different amounts of total fat on the serum levels of carotenoids especially beta-carotene and lutein, but to our knowledge no study has looked at the effect of different amounts of fats on the serum lycopene levels, and whether this could subsequently affect the oxidation of LDL in vitro.