The following pages contain the table of contents, index and first few sample pages of this title.
Click here to purchase this title
or to visit the product page.
The Rotary Cement Kiln

Second Edition

by

Kurt E. Peray

Chemical Publishing Co., Inc.
New York, N.Y.
Preface

Often regarded as the heart of the plant, the kiln constitutes clearly the most important step in the process of cement manufacturing. It represents the largest single capital investment and consumes the major portion of the energy requirements in the plant. Regardless how much effort and attention is being given to the preparation of the kiln feed, the fact remains that the feed has to be properly burned in the kiln so that a good quality product can be sold to the customer. Because of its importance, the kiln burning operation deserves special attention and kiln operators should be properly trained. The old simple saying still holds true: “When the kiln discharges clinker, the company has a fighting chance to make some profits, but when no clinker is produced, no money can be made.”

The rotary kiln requires specialized knowledge and experience on the part of the operator so he can successfully perform his job. Thus, with its complex instrumentation and multiple reactions, the kiln poses a significant challenge to the kiln operator. It is obvious that the kiln operator occupies one of the key positions in the production crew.

The Rotary Cement Kiln is the first handbook of its kind to deal not only with the theoretical aspect, but also with the actual control functions of kiln operation. First published in 1972, the original edition of this book dealt primarily with wet- and long dry-process kilns. Since that time, the cement industry has undergone a radical change brought about by the energy crisis of the mid-seventies. More fuel and labor efficient kilns were built to keep pace with the rapid advances in cement manufacturing technology. Capital that was sufficient twenty years ago to buy a
complete new cement plant today will barely be enough to buy a kiln. But, the new modern preheater and precalciner kilns of today, outperform and outproduce the older wet and dry kilns by a wide margin. Most of these are also fully automatic, controlled by computers and the noisy, dusty burnerfloor of the past has been replaced by remote, air-conditioned control rooms. There is no question that these technological advances have benefited the kiln operator for they have made his job easier and more pleasurable. On the other hand, there is no doubt that the operator's responsibility has greatly increased because most are responsible not only for kiln operation but for the control of the raw and finished grinding departments too. It is the author's hope that this revised edition will be as well accepted in the cement industry as the first book. We have expanded each chapter to make this a more complete and up-to-date training and reference book not only for kiln operators but for supervisors and management staff as well. Most important, we have added extensive discussions for preheater and precalciner operations.

The author discusses the theoretical fundamentals, including basic cement chemistry, composition of the kiln feed, heat balances and heat transfer, combustion, flames, fuels, and the air circuitry in a rotary kiln.

Step-by-step descriptions of the control functions for the operation of a rotary kiln are extensively discussed. The described burning procedures and techniques have been tested over many years on kilns of various dimensions, and experience has proven them to be entirely successful. So much so that computer control programs have been recently written and successfully placed in operation that were based on the 27 basic kiln control conditions first introduced by the author in our first book. Adopted for hundreds of kilns worldwide, they are the foundation for stable and economical operations.

The appendix includes a section with conversion tables, definitions of common terms relating to rotary kilns, and a suggested outline for a training program for new operators.

Many thanks to Joseph J. Waddell who coauthored the first edition with me.
Contents

PART I. KILN SYSTEMS AND THEORY

1. History 3
2. Types of Rotary Kilns 6
3. The Refractory 17
4. Fuels 37
5. Combustion 44
6. The Flame 63
7. Heat Transfer 83
8. Heat Balances 106
9. The Chemistry of Kiln Feed and Clinker 115
10. Reaction Zones in the Rotary Kiln 141
11. Coating and Ring Formation in a Rotary Kiln 147
12. The Air Circuit in a Rotary Kiln 155
13. Movement of Material Through the Kiln 174

PART II. KILN OPERATING PROCEDURES 199

14. Kiln Operating and Control Methods 201
15. Instrumentation 207
16. Kiln Control Variables 232
17. Fuel Systems 253
18. Clinker Cooler Control 266
19. Kiln Exit-Gas Temperature Control 292
20. Feed-Rate Control 299
21. Kiln Starts and Shutdowns 308
22. The 27 Basic Kiln Conditions 327
23. Kiln Emergency Conditions 346
24. Safety and Accident Prevention 362

Appendix A: The International System of Units (SI) 367
Appendix B: Weights and Measures 369
Appendix C: Temperature Conversions 378
Appendix D: Kiln Operator’s Quiz 382
Index 386
Part I

Kiln Systems and Theory
1.

History

Vertical furnaces and simple forms of shaft kilns were used for burning lime well over 2,000 years ago. History tells us that the Romans used a vertical furnace in which to burn a pozzolanic lime. Near Riverside, California are the remains of underground furnaces (Fig. 1.1) in which the early Mexican settlers burned limestone to make lime during the first part of the 19th century. In later times so-called bottle and shaft kilns were employed. Vertical kilns of the type shown in Fig. 1.2 were constructed in Southern California about the turn of the century.

Early development of the rotary kiln probably started about 1877 in England, but Frederick Ransome is usually credited with the first successful rotary kiln, which he patented in England in 1885. Although the first Ransome kilns were a major breakthrough in the cement industry at that time, many years passed before a successfully operating rotary kiln was put into production. It was mainly the pioneer work of American engineers a few years after Ransome’s discovery that brought the concept of the rotary kiln out of its infancy. The first economical rotary kiln in America, developed by Hurry and Seaman of the Atlas Cement Company, went into production in 1895.

Shaft kilns with continuous feed are now used mainly and only for the burning of lime and minerals other than cement. Rotary kilns have replaced these shaft kilns entirely in the cement industry. Although years ago, shaft kilns showed lower thermal and power requirements than rotary kilns, the advent of the preheater and precalciner kilns with their increased output and fuel efficiency has apparently made the shaft kiln obsolete for the burning of cement clinker.
The first Ransome kilns were 45 cm (18 in.) in diameter and 4.5 m (15 ft) in length. Later, about 1900, the rotary kiln grew to 1.8 m (6 ft) in diameter by 18 m (60 ft) long which in today’s terms would have to be classified as miniatures. Kiln sizes really started to explode in the 1960’s when they reached dimensions up to 6.5 m (21 ft) diameter and up to 238 m (780 ft) length. With these enormous sizes and corresponding high output rates a considerable amount of new structural and control problems started to evolve. Refractory life in the kiln became uneconomically low, coolers couldn’t handle that high output especially not during upset conditions, and mechanical equipment failures became weekly occurrences in many plants.

The energy crisis represented a blessing in disguise in matters of kiln design.Suddenly, fuel conservation became the number one priority item in most cement plants which led directly to increased construction of preheater kilns all over the North American continent. Although these pre-
heater kilns satisfied the need for lower fuel consumption, they didn't meet the requirements for using low-grade fuel and ever-increasing demands for higher production rates.

In an attempt to gain these higher outputs, the Japanese cement industry increased preheater kiln sizes to a point where they were back to square one, namely, these kilns again became too large; frequent mechanical problems and short brick-life became the norm just as in the times of the dry and wet monster kilns. The major breakthrough came in Europe where precalcination was successfully attempted in the late 1960's using a very low bituminous shale as a component of the kiln feed in a conventional preheater kiln. Adding combustible materials to the kiln feed, at that time, was nothing revolutionary, for the author himself, in 1957, had burned a wet kiln in Canada that contained oil shale in the slurry. The European experience, however, was the first time such an addition was successfully tried in a preheater kiln and thus paved the way for today's precalciner kiln. Precalciner kilns are the latest advance in cement manufacturing technology. They combine low thermal requirements, are able to use low-grade fossil fuels or other combustible materials, and show output rates that were considered unattainable only a few years back.
2.

Types of Rotary Kilns

Generally speaking, the clinker manufacturing processes used in rotary kilns are classified into:

- Wet-Process Kilns
- Semidry Kilns
- Dry Kilns
- Preheater Kilns
- Precalciner Kilns

Each of these types are discussed here.

2.1 WET PROCESS

Into this group fall all processes in which the kiln feed enters the kiln in the form of a slurry with a moisture content of 30 to 40%. In comparison with a dry-process kiln of the same diameter, a wet-process kiln needs an additional zone (dehydration zone) to drive off the water from the kiln feed. Therefore, it must be considerably longer in order to achieve the same production rate.

To produce an equivalent amount of clinker, a wet-process kiln requires theoretically more fuel than a dry-process kiln because of the extra heat required to evaporate the water. However, in actual operation of a kiln this fundamental fact does not always hold entirely true. As one progresses in the reading of this book, the reasons for these discrepancies between theory
and actual operation will become clearer and understandable.

Advantages of a wet-process kiln are:

1. feed is blended more uniformly than in the dry process
2. dust losses are usually smaller, and
3. in moist climate regions, wet processing of the raw material is more suitable than dry because of moisture already present in the blend materials.

2.2 SEMIDRY PROCESS

This member in the group of rotary kilns is also widely known under the term *Grate Process Kiln* or *Lepol Kiln*. These kilns are as efficient in matters of fuel consumption as the most modern preheater and precalciner kilns. Output rates, however, lag behind the aforementioned types of kilns. However, it is advantageous to select a Grate Process Kiln over a preheater or precalciner kiln in places where raw material moisture is so high that it cannot be economically dried by waste heat from the kiln. Lepol Kilns, because of the fact that the kiln exit gases pass through the granular feed bed, operate with much lower dust contents in the waste gases which gives these kilns a decisive advantage over other preheater kilns. Instead of granulating the kiln feed, some plants use filter press cakes to feed the kiln. In such cases, the wet-kiln feed slurry is first passed through large presses for removal of the free water and more importantly, to remove alkalies before the filter cakes are fed to the kiln.

In the grate process, pulverized dry-kiln feed is first pelletized into small nodules by means of 10-15% water addition, then the nodules are fed onto a traveling grate where they are partly calcined before they enter the rotary kiln. Heating of the nodules is effected by the exit gases from the rotary kiln, the hot gases passing through the material bed from above as they are drawn downward through the grates by means of a fan. The partly calcined material then falls down a chute into the rotary kiln where final clinkerization takes place. Because the kiln feed is already partly calcined before it enters the kiln, the rotary kiln itself is only about one-third the usual length. Fig. 2.1 is a schematic diagram of the flow of gas and material through a Lepol grate-process preheater.
Fig. 2.1 Flow diagram of a Lepol preheater. Pelletized feed fed onto a traveling grate, is heated and partly calcined by hot kiln exit gases before it enters the kiln.

One advantage of grate-process kilns is the uniform size of clinker leaving the kiln, an aspect that is decidedly beneficial for grinding the clinker. However, there are some features not found in conventional rotary kilns that need very close attention; for example, production of the nodules and control of the thickness of the feed bed over the traveling grates. Such a kiln usually requires additional labor to attend the granulator plant.

2.3 DRY-PROCESS KILNS

As the term indicates, in this process the kiln feed enters the kiln in dry powder form. Dry-process kiln dimensions are similar to wet kilns in that they are long and typically show a length-to-diameter ratio of approximately 30:1 to 35:1. Dry-process kilns operate with a very high, back-end temperature and require watersprays at the feed end to cool the exit gases to safe levels before they enter the baghouse or precipitator. Most dry kilns are equipped with chain sections at the feed end to transfer heat, that otherwise would be lost, to the feed before the gases leave the kiln.

Fig. 2.2 shows a picture of a chain section. The gases enter the chains at a temperature of approximately 800 C (1470 F) and leave the kiln exit at a temperature of 450 C (840 F). In countercurrent flow, the material
Index

A

Accidents, 363
Air, circuit, 155, 158, 165
deficiency, 53
distribution, cooler, 283
for combustion, 50, 166
inleakage, 112, 173
pressure, 155
velocity, 155
Alite, 139
Alkalies, 117
Alumina bricks, 29
Alumina-Iron ratio, 125
Ash composition, 119
Automatic control, 206

B

Back-end temperature, 239, 246, 292, 327
Baghouse, 172
Basic refractory, 29, 151
Belite, 139
Birefringence, 140
Black feed, 232, 301
Bogue formulas, 121
Brick charts, 35
Bricks required, 33
Btu's 42
Burnability, 124, 128
Burner alignment, 79
tip velocity, 65, 260
Burning technique, 69, 327
Burning zone, 143, 152
control, 232, 327
temperature, 235, 239

C

CO₂, 58, 73, 166, 167, 246, 293
Calcination, 85, 88
percent, 60, 88
Calcining zone, 59, 142
Capacity, of kiln, 179, 197
Carbon dioxide, 58
monoxide, 52
Cardox system, 152
Cement composition, 121
Chains, 8
failure, 20
moisture, 144
Chlorides, 118
Clinker, composition, 121, 122, 137
compounds, 85
microscopy, 138
properties, 131
rings, 150
size, 274
temperature, 112, 235, 289
Coal, 37
ash, 119, 120
factor, 49
grinding, 73, 254
mill temperatures, 72
storage, 38, 254
Coating, 88, 147, 238
Combustibles, 53
Combustion, 44, 50, 60, 166, 240
air, 50, 57, 66
control, 56, 68, 71
products, 58
precalciner, 57
Computer control, 230
INDEX

Conduction, 83
Control loops, 229
Controllers, 207, 228
Convection, 83
Conversion factors, 367
Cooler, air, 158, 166, 283
 bed depth, 279
 clinker distribution, 283
 control, 267
 fans, 280
 planetary, 162
 reciprocating, 161, 276
 retention time, 273
 rotary, 163
 stack losses, 112
Cooling zone, 143
Cycle, 320

direction, 77
ignition, 69
length, 64
propagation, 66
shape, 77, 236
temperature, 81
Flames, 63, 259
Forced firing, 179
Fuel, burners, 259
 coal, 37, 49
 control, 244
 gas, 41
 grinding, 253
 handling, 253
 oil, 40

G

G-Cooler, 161
Gas, analyzer, 59
 flow rate, 167–171
 laws, 44
 losses, 108
 pressures, 45
 temperatures, 46
 velocity, 157, 180
 volumes, 44
Grate coolers, 161, 276

H

Hazards, 364
Heat, balance, 106
 exchangers, 86
 profile 84, 88
 savings, 113
 transfer, 83, 94, 164
Heating value, 42
High-grade heat, 85
Hood draft, 290
Hydraulic ratio, 126

I

I.D. fan, 20, 66, 69, 172, 245, 290, 295
ISO shapes, 31, 33, 34
Ignition, 69

D

Dark feed, 235
Dicalcium silicate, 123
Direct coal firing, 39
Dolomite refractory, 30, 150
Draft, 166, 294, 297
Dry process, 8, 110, 145
Drying zone, 142
Dust collectors, 172
Dust losses, 108

E

Emergency conditions, 334, 346
Exit gas, 240, 272, See also back-end.

F

Fan, damper position, 282
 horsepower, 281
 static pressure, 281
Fans, 280
Feed, 22
Feed end temperature, See back-end.
Feed rate, 299, 302
Feed, behind burning zone, 235
Flame, adjustment, 78
Indirect coal firing, 39
Inleakage, of air, 173
Instrumentation, 207, 213
Interlocks, 229

K

Kiln, 27 conditions, 327
capacity, 179
control, 237
cycling, 320
diameter, 35
draft, 294
drive amperes, 239
drive torque, 239, 246
feed, 115, 120
feed fineness, 130
loading, 174
output, 300
roll back, 250
shell, 312
shut-downs, 71, 313
speed, 86, 248, 306
start, 69, 308
tires, 312
turning, 20, 318

L

Lepol kilns, 7, 146
Lignite, 37
Lime saturation factor, 126
Liquid formed, 150
Liquid, percent, 127
Liter weight test, 135
Low grade heat, 85
Loading of kiln, 175, 177

M

Magnesia, 116
Microscope, 138
Mudrings, 154
Movement of kiln feed, 171

N

Natural gas, 41
Nose rings, 150
\(\text{NO}_x \), 243, 246

O

Ono microscopic test, 138
Operating methods, 201, 327–345
Oxygen, 53, 69, 239, 241, 244, 327
 enrichment, 75

P

PPM, 54
Petroleum coke, 37
Phase formations, 85
Planetary coolers, 162
Plume, 70
Potassium, 117
Precalcer, air circuit, 160
 kiln, 5, 10, 75 87, 146
Preheat zone, 142
Preheater, air circuit, 159
 kiln, 10, 86, 111, 146
Pressure measurements, 156
Primary air, 67, 70
 fan, 20
 temperature, 256
 volume, 261

R

Radiation, 83
Ransome kiln, 4
Raw materials, 115, 116
Recorders, 207, 209
Refractory, 17, 28, 309
 failure, 17
 life, 19
 properties, 22–27
 shapes, 18, 31, 33
 DIN tests, 27
 heat transfer, 94
Retention time, 176, 178, 275, 305
Ring formation, 147, 153
Rotary coolers, 163
INDEX

S
Safety, 362
Secondary air, 70, 237, 287
Semidry process, 7
Shaft kilns, 3
Shell, expansion, 21, 312
 ovality, 22
 temperatures, 100, 112
Silica ratio, 125
Sinter zone, 143
Slurry, 144
 moisture, 108
Sodium, 117
Solid fuels, 37
Spinell bonded bricks, 31
Stability, operation, 203
Sulfur, 117
System check, 309

T
Technique, burning, 201
Temperature conversion, 378
Tertiary air, 12
Thermal, contraction, 317
 expansion, 311
 work in kiln, 84
Tip velocity, 260

Tire, expansion, 312
 slippage, 22
Transition zones, 143
Travel time, See retention time.
Tricalcium aluminate, 123
 silicate, 123

U
Undergrate pressure, 267, 279

V
Velocity, gas, 157, 180
Vertical kilns, 3
Viewing glass, 233
Volatile, 67
Volume changes, refractory, 311
Volume, gas, 157

W
Wet-process kilns, 6, 109, 113, 145

Z
Zones in kiln, 141
The original rotary cement kilns were called 'wet process' kilns. In their basic form they were relatively simple compared with modern developments. The raw meal was supplied at ambient temperature in the form of a slurry. Also, for many years, it was technically difficult to get dry powders to blend adequately. Quite a few wet process kilns are still in operation, usually now with higher-tech bits bolted on. However, new cement kilns are of the 'dry process' type. Dry process kilns. In a modern works, the blended raw material enters the kiln via the pre-heater tower. Here, hot gases from the kiln, and probably the cooled clinker at the far end of the kiln, are used to heat the raw meal. As a result, the raw meal is already hot before it enters the kiln. This item: Rotary Cement Kiln (2nd ed) by Kurt E. Peray Paperback $70.58. Only 1 left in stock - order soon. Ships from and sold by Serendipity UnLtd. Cement Manufacturer's Handbook by Kurt E. Peray Paperback $62.24. Only 1 left in stock - order soon. Ships from and sold by Reuseaworld. Very Useful book on the cement kiln process and analyse. A lot of graphics, tables and equation to understand kiln behavior. Just one point, hope there will be a new edition with up to date PLC and alternative fuels. Read more. Cement kilns that are tested, reliable, and require minimal energy and space are what FLSmidth has been delivering for more than 100 years. Our cement rotary kilns deliver high production capacity with long lifespans and low maintenance. Products. Flexible, reliable cement kilns from the world’s top name in rotary kilns. Filter within list. When you install one of our FLSmidth cement kilns, you’re installing more than 100 years of experience from cement plants around the world. Our rotary kilns are known for their reliable operational performance and their flexibility for upgrades as your business evolves. Cement plant kilns are our speciality, and we work hard to make sure that our cement kilns are space-saving, energy-efficient, and have a long lifespan. Operational reliability.